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The intrinsic anomalous Hall effect in spin-polarized two-dimensional electron gases with Dresselhaus
spin-orbit interaction is studied within the Kubo-Streda formalism. We find that when the k3 term of Dressel-
haus interaction is taken into account, in the weak impurity scattering limit the intrinsic anomalous Hall
conductivity is not zero and its absolute value increases with the increment of the Fermi energy and the
thickness of the quantum well when both subbands are partially occupied. This result is opposite to the existing
conclusion of Rashba spin-orbit interaction in which the anomalous Hall conductivity vanishes in the same
situation.
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I. INTRODUCTION

The theoretical discussion of anomalous Hall effect
�AHE� in ferromagnetic metals and semiconductors has a
long controversial history. Karplus and Luttinger1,2 gave the
first theoretical explanation of AHE and they presented an
anomalous Hall coefficient proportional to the square of the
ordinary resistivity. Later, two mechanisms of AHE based on
the influence of disorder scattering in imperfect crystals,
termed by skew scattering and side jump, were given by
Smit3 and Berger,4 respectively. Interestingly, the intrinsic
mechanism of AHE, resulting from the spin-orbit interaction
�SOI� of conduction electrons which may induce a nonzero
Berry phase or magnetic monopole in the momentum space,
is renewed currently.5,6 Moreover several experiments in fer-
romagnetic semiconductors can be quantitatively interpreted
in terms of the intrinsic AHE mechanism.5–10 Effects of dis-
order on the AHE in two-dimensional spin-polarized electron
gases with Rashba SOI have been theoretically investigated
by several groups.11–20 Even for such a simple model of
Rashba SOI, however, a series of previous studies yielded a
multitude of results with discrepancies. Recently Nunner et
al.19 addressed this question on the origin of the previous
discrepancies and found that all contributions to the anoma-
lous Hall conductivity vanish to leading order in disorder
strength when both of the spin-split bands are occupied. On
the other hand, the intrinsic spin Hall effect �SHE� was also
studied in the paramagnetic electronic systems with SOI.21,22

The AHE and the SHE reflect the charge and spin aspects of
electron transport, respectively, and have some common fea-
tures as their physical origin stems from the same SOI of
conduction electrons. Inoue et al.15 also presented the strong
similarity between AHE and SHE. Note that for pure Rashba
SOI the spin Hall conductivity becomes zero even for a weak
disorder scattering,23–27 however, a nonzero spin Hall con-
ductivity appears when the cubic terms of Dresselhaus SOI is
included.28 So, analogous to the SHE, what is the novel
property of the AHE in two-dimensional spin-polarized elec-
tron gases with Dresselhaus SOI in contrast to the case for
Rashba SOI? In this paper we will address this question and
investigate a disordered two-dimensional electron gas with
the intrinsic Dresselhaus-type SOI within the Kubo-Streda

formalism to calculate the anomalous Hall conductivity. We
will show that the intrinsic anomalous Hall conductivity in a
Dresselhaus-type two-dimensional electron gas with uniform
exchange splitting is nonvanishing even when both subbands
are occupied, which is opposite to the existing conclusion of
Rashba SOI. In fact the k3 term of Dresselhaus SOI plays a
key role in this nonzero conductivity, which is analogous to
the intrinsic SHE. The numerical calculation is performed for
a GaSb quantum well �QW� with Dresselhaus SOI in the
weak impurity scattering limit and it is shown that when the
k3 term of Dresselhaus SOI is taken into account, the abso-
lute value of the intrinsic anomalous Hall conductivity in-
creases with the increment of the Fermi energy and the thick-
ness of QW when both subbands are partially occupied.

II. MODEL HAMILTONIAN

The Dresselhaus SOI arises from the asymmetry of the
crystal itself29 and in the bulk crystal is described by
Hamiltonian30,31

H̃so = ���xkx�ky
2 − kz

2� + c.p.� , �1�

where � is the spin-orbit coefficient for the bulk semiconduc-
tor, �� ��=x ,y ,z� are the Pauli matrices, k� are the electron
wave vector components, and c.p. stands for the cyclic per-
mutation needed to obtain the remaining terms of the Hamil-
tonian. In a QW grown in the crystallographic direction
�001� with thickness a while kx and ky are good quantum
numbers, the confinement along the z axis is approximately
realized by taking �kz�=0 and �kz

2���� /a�2 for the lowest
energy band, then the Dresselhaus SOI term �Eq. �1��
becomes32,33

Hso = ���xkx�ky
2 − �kz

2�� + �yky��kz
2� − kx

2�� . �2�

Here, we take kx=k cos � and ky =k sin �. The Dresselhaus
SOI in Eq. �2� contains terms both linear and cubic in k.

We consider a spin-polarized two-dimensional electron
gas with Dresselhaus SOI
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H0 =
�2k2

2m
+ Hso − h0�z, �3�

where m is the effective mass of the conduction electron and
h0 is the exchange field. Equation �3� can be written as a
general form

H0 = ��k� + �
�

d��� �4�

with ��k�=�2k2 / �2m�. Here, for the case described by Eq. �3�
one has dx=−�0kx+�kxky

2, dy =�0ky −�kykx
2, and dz=−h0 with

�0	��kz
2�. The eigenenergies of Hamiltonian �3� are

E	�k,�� =
�2k2

2m
	 
�k,�� , �5�

where


�k,�� = 
�
�

d�
2 = 
h0

2 + �0
2k2 + f1���k4 + f2���k6 �6�

with f1���=−�0� sin2 2� and f2���= 1
4�3 sin2 2�. The two

spin-dependent dispersion branches E	�k ,�� are angular an-
isotropic. For a realistic calculation we need to consider the
scattering from impurities with a disorder potential V�r�. For
simplicity, we consider H0 in Eq. �3� with nonmagnetic im-
purities with short-ranged potential: V�r�=V0�i��r−Ri�,
where V0 is the strength of the impurities. Thus, the Hamil-
tonian of our model is H=H0+V�r�. The retarded Green’s
function of the clean system is

G�0�R�k,E� =
E − ��k� + ��d���

�E − E+ + i0+��E − E− + i0+�
. �7�

For a given Fermi energy �F, the Fermi wave numbers k	 of
the two subbands are dependent on � and one can get k	 by
means of numerical solving of the following equation:

�F =
�2k	

2

2m
	 
	 �8�

with 
		
�k	 ,��. Including the self-energy R, the re-
tarded Green’s function can be written as GR�k ,E ,R�= �E
−H0−R�−1. We calculate the self-energy R using the Born
approximation11,19

R = niV0
2� d2k

�2��2G�0�R�k,E� �9�

=− i���0 + �
�

���� �10�

with

� =
1

4
niV0

2� d�

2�
��+ + �−� , �11�

�� =
1

4
niV0

2� d�

2�
� �+


+
d�

+ −
�−


−
d�

− , �12�

where ni is the density of the impurity, d�
	=d��k	 ,��, and �	

is related to the density of states at the Fermi levels of the
two subbands

�+ =
m���F − h0�

��2 +
m


+
��0

2 + 2f1���k+
2 + 3f2���k+

4�� , �13�

�− =
m

��2 −
m


−
��0

2 + 2f1���k−
2 + 3f2���k−

4�� . �14�

Here ��x� is the Heaviside step function.
Thus, the impurity averaged Green’s function is given

GR =
�E − ��k� + i���0 + ���d� − i�����

�E − ��k� + i��2 − ���d� − i���2 . �15�

In the limit of small ��, the retarded Green’s function can
also be written as19

GR = G0
R�0 + �

�

G�
R��, �16�

where G0
R= 1

2 �G+
R+G−

R�, G�
R= 1

2g��G+
R−G−

R� with G	
R = �E−E	

+ i�	�−1, �	=�	��d��� /
, and g�= �d�− i���
 /
�
2− i��d����.

III. GENERAL EXPRESSION FOR THE ANOMALOUS
HALL CONDUCTIVITY

We use the Kubo-Streda formalism34,35 to calculate the
off-diagonal conductivity �yx, which can be decomposed into
�yx=�yx

I +�yx
II .11,19,36 Here �yx

I results from the contribution of
electrons at the Fermi surface and �yx

II contains the contribu-
tion of all filled states below the Fermi energy, with

�yx
I =

e2�

4�V
Tr�vy�GR��F� − GA��F��vxG

A��F�

− vyG
R��F�vx�GR��F� − GA��F��� , �17�

�yx
II =

e2�

4�V
�

−�

�

dEf�E�Tr�vyG
R�E�vx

�GR�E�
�E

− vy
�GR�E�

�E
vxG

R�E� − vyG
A�E�vx

�GA�E�
�E

+ vy
�GA�E�

�E
vxG

A�E�� , �18�

where �¯ � means the disorder average, the trace is taken
over wave vectors and band index, f�E� is the Dirac-Fermi
distribution function, and the velocity operators are v�

=�H0 / ���k��. In the weak scattering limit we will omit the
contributions of GRGR and GAGA in Eq. �17� since these
terms are of higher order in the disorder scattering rate �.19,20

Moreover, for �yx
II it is sufficient to calculate the bare bubble

contribution.19,36,37

The bare contribution of �yx
II in the clean limit yields
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�yx
II =

2e2

�
� d2k

�2��2����F − E+� + ���F − E−�
�E+ − E−�

+
f�E+� − f�E−�

�E+ − E−�2 ��
ijk

�ijk
�di

�ky

�dj

�kx

dk




=
e2h0

2��2��2� d���+��k+,��

+

2 +
�−��k−,��


−
2

+ ���F − h0��
0

k+

kdk
��k,��


3 − �
0

k−

kdk
��k,��


3 � ,

�19�

where ��k ,��=−�0
2+�0�k2+ 3

4�2k4 sin2 2�. If we neglect the
k3 term in Eq. �2�, �yx

II can be analytically calculated and
yields

�yx
II =

e2

4���1 −
h0


h0
2 +

2�0
2m�F

�2 + ��0
2m

�
2���h0 − �F� .

�20�

One can find that the sign of �yx
II in the case of k-linear

Dresselhaus SOI is opposite to that of k-linear Rashba SOI
given by Nunner et al.19 However, when k3 term of Dressel-
haus SOI in Eq. �2� is also considered, it is hard to give an
analytic result and so we will numerically calculate �yx

II of
Eq. �19� in what follows.

To calculate �yx
I , we take vertex corrections which can be

of similar magnitude as the bare bubble and thus we divide
�yx

I into two parts,19 �yx
I =�yx

I,b+�yx
I,l, where �yx

I,b is the bare
bubble contribution and �yx

I,l is the ladder vertex corrections.
First, we can give the general form of �yx

I,b for Eq. �4�

�yx
I,b =

e2

2��
� � kdkd�

�2��2 Tr�vyG
R��F�vxG

A��F��

=
e2

8�2�
� d���+��1

+ + �2
+�

�+
+

�−��1
− − �2

−�
�−

− ��+�3
+


+
+

�−�3
−


−
� , �21�

where �i
		�i�k	 ,�� �i=1,2 ,3� with �i�k ,�� defined by

�1 =
�

m
�
�

Im�kyd�xg�+1g�+2
� − kxd�yg�+1g�+2

� �

+ �
�

�d�yd�+1,x + d�xd�+1,y�Re�g�g�+1
� �

+
1

2�
�

d�xd�y�� +
�2kxky

2m2 �0, �22�

�2 =
�kx

m
�
�

d�y Re�g�� +
�ky

m
�
�

d�x Re�g��

− �
�

�d�xd�+1,y − d�yd�+1,x�Im�g�+2� , �23�

�3 = −
�kx

m
�
�

d�y Im�g�� −
�ky

m
�
�

d�x Im�g��

− �
�

�d�xd�+1,y − d�yd�+1,x�Re�g�+2� , �24�

where d��=�d� / ���k�� �� ,�=x ,y ,z�, �0=1+ �gx�2+ �gy�2
+ �gz�2, �x=1+ �gx�2− �gy�2− �gz�2, �y =1− �gx�2+ �gy�2− �gz�2,
�z=1− �gx�2− �gy�2+ �gz�2, and Im�¯ � and Re�¯ � denote to
take the imaginary part and the real part, respectively. In Eqs.
�22�–�24� and the following texts, the definitions x+1=y, y
+1=z, and z+1=x are used. For Eq. �3�, we have dzx=dzy
=0, dxx= �−�0+�ky

2� /�, dxy =2�kxky /�, dyx=−2�kykx /�, and
dyy = ��0−�kx

2� /�.
Then, we calculate the ladder vertex corrections �yx

I,l. In
the ladder approximation, the vertex correction of electric
velocity Tx satisfies the self-consistent vertex equation38

Tx = vx + niV0
2� d2k

�2��2GR��F�TxG
A��F� . �25�

If the second term of right-hand side in Eq. �25� is defined as
�x, then one can get

�x = niV0
2� d2k

�2��2GR��F�vxG
A��F�

+ niV0
2� d2k

�2��2GR��F��xG
A��F� 	 ṽx + �̃x. �26�

The first term ṽx of right-hand side in Eq. �26� is given

ṽx = niV0
2� d2k

�2��2GR��F�vxG
A��F� = �

�=0,x,y,z
c���, �27�

where �0 is the two by two identity matrix and

c� =
niV0

2

4�
� d���+���1

+ + ��2
+ �

�+
+

�−���1
− − ��2

− �
�−

− ��+��3
+


+
+

�−��3
−


−
� , �28�

where ��i
	 	��i�k	 ,�� �i=1,2 ,3� with ��i�k ,�� defined by

�01 = −
1

2�
�

d�x Im�g�+1
� g�+2� +

�kx

4m
�0,

�02 =
1

2�
�

d�x Re�g��, �03 = −
1

2�
�

d�x Im�g�� ,

��1 =
d�x

4
�� +

1

2
Re�d�+1,xg�g�+1

� + d�+2,xg�g�+2
� �

−
�kx

2m
Im�g�+1g�+2

� � ,

INTRINSIC ANOMALOUS HALL EFFECT IN SPIN-… PHYSICAL REVIEW B 81, 075318 �2010�

075318-3



��2 =
1

2
Im�d�+1,xg�+2 − d�+2,xg�+1� +

�kx

2m
Re�g�� ,

��3 =
1

2
Re�d�+1,xg�+2 − d�+2,xg�+1� −

�kx

2m
Im�g�� .

The renormalized vertex �x has the general solution

�x = �
�=0,x,y,z

b���. �29�

Substituting Eqs. �27� and �29� into Eq. �26�, one can obtain

�x = �
�
�c��� + niV0

2� d2k

�2��2GR��F�b���GA��F��
= �

�
�c��� + b��

�

��
� ��� , �30�

where

��
� =

niV0
2

4�
� d���+���1

�+ + ��2
�+�

�+
+

�−���1
�− − ��2

�−�
�−

− ��+��3
�+


+
+

�−��3
�−


−
� , �31�

where ��i
�		��i

� �k	 ,�� �i=1,2 ,3 and � ,�=0,x ,y ,z� with
��i

� �k ,�� defined by ��1
� =

��

4 , ��2
� =��3

� =0, �01
� =−��1

0 =
− 1

2Im�g�+1g�+2
� �, �02

� =��2
0 = 1

2Re�g��, �03
� =��3

0 =− 1
2Im�g��,

��1
�+1=��+1,1

� = 1
2Re�g�g�+1

� �, ��2
�+1=−��+1,2

� =− 1
2Im�g�+2�,

and ��3
�+1=−��+1,3

� =− 1
2Re�g�+2�. Thus the coefficients b� in

Eq. �29� are given by the following equations:

b� = �
�

Q��c�, �32�

where Q�� are the elements of the four by four matrix

Q =�
�1 − �0

0� − �x
0 − �y

0 − �z
0

− �0
x �1 − �x

x� − �y
x − �z

x

− �0
y − �x

y �1 − �y
y� − �z

y

− �0
z − �x

z − �y
z �1 − �z

z�
�

−1

. �33�

The ladder diagrams are therefore given by

�yx
I,l =

e2

2��
�
�
� d2k

�2��2Tr�vyG
R��F�b���GA��F��

=
e2

8�2�
� d���+��̃1

+ + �̃2
+�

�+
+

�−��̃1
− − �̃2

−�
�−

− ��+�̃3
+


+
+

�−�̃3
−


−
� , �34�

where �̃i
		�̃i�k	 ,�� �i=1,2 ,3� and �̃i�k ,�� can be ob-

tained by replacing �kx /m with b0 and d�x with b� ��
=x ,y ,z� in Eqs. �22�–�24� of �i�k ,��.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We start our discussion of the numerical results in the
weak scattering limit. We consider a GaSb QW with an ef-
fective mass of conduction electron m=0.041m0 �here m0 is
the free electron mass�, the spin-orbit coefficient �
=187 eV Å3.31 The value of �0 is dependent on the thick-
ness of QW, here we assume the thickness a=5 nm and so
�0=73.82 eV Å. Numerical integrations give that �x=�y
=0 and �z�0 whether �F�h0 or −h0��F�h0. In the pre-
vious case for Rashba type19 or pure k-linear Dresselhaus-
type SOI, analytic results give �z=0 for the situation where
both subbands are partially occupied �i.e., �F�h0� and �z
�0 when only the majority band is partially occupied �i.e.,

ε

σ Ι

σ Ι

σ ΙΙ

σ

FIG. 1. �Color online� Anomalous Hall conductivity plotted as a
function �F /h0. Numerical calculation is performed in the weak
scattering limit for a GaSb QW with m=0.041m0, �=187 eV Å3,
a=5 nm, and h0=100 meV. The solid �black� line corresponds to
the total intrinsic anomalous Hall conductivity �yx, the dashed �red�
line to �yx

I,b, the dotted �blue� line to �yx
I,l, and the dashed-dotted

�magenta� line to �yx
II .

σ

ε

ε

ε

FIG. 2. �Color online� The total intrinsic anomalous Hall con-
ductivity �yx for different Fermi energies plotted as a function of
the thickness of QW in the situation that both subbands are partially
occupied. The �black� circles correspond to �F /h0=1.1, the �red�
squares to �F /h0=1.5, and the �blue� triangles to �F /h0=2.0.
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−h0��F�h0�. In Fig. 1, the total intrinsic anomalous Hall
conductivity �yx and the three contributions to the conduc-
tivity �i.e., �yx

I,b, �yx
I,l, and �yx

II � are plotted as a function �F /h0.
When only the majority band is partially occupied �i.e.,
−h0��F�h0�, one can observe the sign change in anoma-
lous Hall conductivity �yx. Near �F /h0=1, there is a sharp
change in �yx. When both subbands are occupied �i.e., �F
�h0�, �yx is nonvanishing and its absolute value increases
with the increment of the Fermi energy while �yx is zero for
the case of Rashba SOI.19 It is easy to check that if the k3

term of Dresselhaus SOI is neglected and only k-linear term
of Dresselhaus SOI is kept, analogous to Rashba SOI, the
intrinsic AHE vanishes for the case of �F�h0. The total in-
trinsic anomalous Hall conductivity �yx for different Fermi
energies ��F�h0� is plotted as a function of the thickness of

QW �Fig. 2�. We find that the absolute value of the intrinsic
anomalous Hall conductivity �yx increases with the incre-
ment of the thickness a when both subbands are partially
occupied. Note that with increasing of the thickness a, the
coefficient �0 of the k-linear term of Dresselhaus SOI de-
creases. In fact the k3 term of Dresselhaus SOI plays a key
role in this nonzero conductivity, which is analogous to the
intrinsic SHE.
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